Leerdoel: kan kritisch denken en redeneren over getalsmatige informatie met percentages
Wat betekent dit nou eigenlijk?
Percentages lijken duidelijk, maar ze kunnen misleidend of verwarrend zijn als je niet goed kijkt wat ze betekenen. In dit leerdoel leer je dat je bij percentages altijd moet nadenken over de context.
Je leert dus kritische vragen stellen, zoals:
- “10%… van wat precies?”
- “Is dat veel of weinig?”
- “Heeft deze stijging of daling hetzelfde effect terug?”
Je leert ook dat procentuele stijgingen en dalingen niet elkaars tegenpolen zijn.
Een stijging van 50% gevolgd door een daling van 50% komt niet terug op het oude bedrag. Dat komt omdat de bedragen waarop je het percentage toepast verschillen.
Je wordt dus niet alleen een rekenaar, maar ook een denker die snapt hoe cijfers en verhoudingen werken in echte situaties.
Voorbeeld 1: Is 10% veel of weinig?
Situatie A: Je krijgt 10% korting op een boek van €10
➤ 10% van €10 = €1 → niet zo veel
Situatie B: Je krijgt 10% korting op een huis van €1.000.000
➤ 10% van €1.000.000 = €100.000 → heel veel!
✅ Je ziet: Hetzelfde percentage kan totaal verschillend uitpakken, afhankelijk van waar het over gaat.
Voorbeeld 2: Gelijke stijging en daling? Nee!
Situatie: Een prijs stijgt met 50%, en daalt daarna met 50%. Is de prijs dan weer hetzelfde?
Stap 1: Begin met €100
+50% → €100 + €50 = €150
Stap 2: -50% van €150
➤ 50% van €150 = €75
➤ €150 – €75 = €75
✅ Dus nee, je eindigt niet op €100 maar op €75